
Introduction to Python Environment Setups for AI
Frameworks

Metadata

Title Introduction to Python Environment Setups for AI Frameworks

Host Onur Olgaç, MA BSc.

Date/Time 2025-03-07, 16:30 - 19:30 CEST

Location Everyday A.I. – Promptival @Reaktor
Geblergasse 40, 1070 Wien

Context Python Development, AI Frameworks, Beginner

Who WKO Fachgruppe Werbung Wien

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License (CC BY-NC-SA 4.0).

The license allows for non-commercial use, sharing, and adaptation, as long as the original
author is attributed, and requires that any adaptations or modi�cations be made available
under the same terms.

Introduction

What are we trying to achieve today?

By the end of the workshop:

We are not going to learn how to code in Python:

Understand what Python is and how you can utilize it to bene�t your projects.1
Understand some terminology related to its technologies.2
Understand what a development environment is.3

Run Python environments for frameworks and Python-based tools (both dev and
production).
Hopefully, walk away with a running framework environment.

But we will try to get familiar with debugging Python errors.
Learn how to conduct your own research, �nd answers to issues, problems, or questions.

https://onurolgac.com/
https://werbungwien.at/events/everyday-ai-promptival/
https://reaktor.art/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 0: Background & Concepts

What Is Python?

Python is a high-level, general-purpose programming language �rst released in 1991. It is
coincidentally open-source licensed, providing developers with comprehensive standard
libraries, o�en described as "batteries included," meaning all necessary tools are available out
of the box. Python is known for its strong abstraction, using natural language elements to
make development simpler and more understandable.

Why Are We Talking About Python?

Python has gained widespread adoption due to its popularity among programmers, making it
a leading choice in recent years. Its core philosophy, as seen in the Zen of Python (python
>>> import this), emphasizes simplicity and e�ciency. Python is a multi-paradigm

language that supports structured (procedural), object-oriented, and functional programming
paradigms at di�erent levels of support. It o�ers interoperability as a glue-language to
connect various so�ware components.

Python's extensive library collection includes support for internet-based protocols, making it
easy to interface with apps. It has also gained signi�cant traction in the machine learning
community due to libraries like TensorFlow (from Google Brain, an open-source project) and
PyTorch (originally from Meta AI, currently maintained by the PyTorch Foundation under
the Linux Foundation). Developers can leverage these tools for data manipulation and
analysis.

Programming vs. Coding vs. Scripting

Programming involves designing and implementing complete so�ware solutions as part of
so�ware engineering. This process is a higher level of complexity compared to coding, which
focuses on writing actual code without necessarily considering design or planning. Coding is
more about execution, while scripting is used for automating tasks, interacting with
applications, and performing one-time operations. Python excels in this area, allowing
developers to write scripts that can be directly executed by an interpreter.

Although probably a gross oversimpli�cation, by de�nition we can make the following order
in terms of scope: Programming > Coding > Scripting.

Interpreters vs. Compilers

Traditional programming languages like C++ and Java require a compilation process: source
code is written, pre-processed, compiled into machine-speci�c assembly code, linked with
other components, and then executed as a binary �le. In contrast, Python uses an interpreter
that reads and executes code line by line in a read-eval-print loop (REPL), typically through a
command-line interface.

“Hello World” in C/C++ vs. Python

C :

C++ :

Python :

Chapter 1: Versioning in Python & It's Modules

As of writing, the latest o�cial Python version is python3.13.2 , which is the most recent
stable release available for download and installation. This distinction is important because it
signi�es that users can rely on this version for both reliability and new features.

Python versions follow a versioning scheme of major.minor.micro which categorizes
updates with dot (.) separated numbers. Major versions (Python 3) represent more
signi�cant changes and innovations in the language, while minor versions (Python 3.12)
o�en introduce new features or capabilities within a major release framework. Micro
versions (Python 3.12.2), on the other hand, are incremental updates that address speci�c
issues or improvements.

#include <stdio.h>

int main() {

 printf("Hello, World!\n");

 return 0;

}

1

2

3

4

5

6

gcc hello.c -o hello

./hello

1

2

#include <iostream>

int main() {

 std::cout << "Hello, World!" << std::endl;

 return 0;

}

1

2

3

4

5

6

g++ hello.cpp -o hello

./hello

1

2

print("Hello, World!")1

python hello.py1

The deprecation process for Python versions is structured such that major versions take 2 to
3 years before being deprecated. Minor versions follow a shorter deprecation period of 6 to 12
months, and micro versions are updated more frequently. This structured approach ensures
that users have advance notice of changes they need to plan for, while still providing support
for older versions through an extended period (o�en referred to as Long-Term Support, or
LTS).

On Unix-based operating systems like macOS and Linux, Python is typically pre-installed as
part of the system so�ware. However, users might opt to install it separately during so�ware
setup processes or speci�cally for a project they are working on. This �exibility allows users
to manage their Python environments according to their speci�c needs.

Exercise #1

By following these steps, you will be able to verify and manage Python installations across various
operating systems and execute basic commands to test functionality. This exercise serves as a
foundational step towards more complex tasks involving Python development and maintenance.

Chapter 2: Understanding Python Libraries, pip, and Virtual
Environments

Python provides a robust ecosystem for managing libraries and packages, enabling
developers to extend functionality beyond the core language. This system is largely facilitated
by pip , and the Python Package Index, which serves as the primary repository for Python
packages.

Open Your CLI Tool: Use the terminal (macOS), Command Prompt (Windows), Windows
Terminal (Windows), Konsole (KDE), or a GNOME-terminal on Linux to access the
command-line interface.

1

Check Python Installation: Verify if Python is installed by typing python3 --version
in the terminal. This will display the current version of Python if it is installed.

2

Ensure Updated Version: If Python is not installed or an older version is present,
download the latest stable version from https://www.python.org/downloads/ and follow
the installation guide provided.

3

Test Functionality by completing the following tasks within the terminal:4
Print "Hello World" either within the interpreter, or by creating a hello.py �le
where you write the code and run it with python in your terminal.
Display the core philosophy (aka. "Zen of Python"). This is an Easter egg built into
Python that you can do a quick search about.
Make some calculations within the Python interpreter.

https://pypi.org/
https://www.python.org/downloads/

1. Introduction to pip: pip is a command-line tool that simpli�es the installation of Python
packages. It allows users to download and install libraries from PyPI (Python Package Index),
ensuring that packages are easily accessible and up-to-date. pip is managed by PyPA, which
has taken over from the original developers, enhancing its reliability and adoption.

2. Installing Python Packages: When a user runs pip install package_name , pip
retrieves the speci�ed package from PyPI and installs it in the current Python environment.
This process includes downloading the package code and setting up the necessary �les for
execution. Popular libraries like numpy (https://pypi.org/project/numpy/) are installed this
way, making them readily available for use in scripts.

3. Managing Multiple Python Versions: One of the challenges in using Python is managing
multiple versions on a single machine. To address this, virtual environments (venv) were
introduced to isolate di�erent projects with their own set of packages and dependencies.
This ensures that updating or reinstalling packages doesn't a�ect other projects.

4. Virtual Environments: venv is the default virtual environment tool for Python 3.3 and
later. It creates isolated directories, each containing their own Python interpreter, libraries,
and scripts. By activating a speci�c virtual environment, users can manage dependencies
without interfering with other environments or system-wide installations.

5. Global vs Local Installations:

6. Package Version Management: Within a virtual environment, pip allows users to specify
exact versions of libraries. This is particularly useful when projects require certain versions
of packages for compatibility or functionality. Pinning versions can be done using �ags in the
pip install command, ensuring that speci�c dependencies are maintained across di�erent

environments.

7. Work�ow and Best Practices:

Global Installation: Installing a package globally makes it available to all users on the
system. This is useful for shared dependencies but may lead to con�icts if multiple
projects require di�erent versions of the same library.
Local Installation (Virtual Environment): Using virtual environments, packages are
installed locally, ensuring that each project has control over its own dependencies. This
prevents version con�icts and allows for pinning speci�c package versions as needed.

New Projects: It's advisable to create a new virtual environment for each project to
manage dependencies e�ectively.
Updates: Use pip update within an environment to ensure all packages are up-to-date
without a�ecting other projects.
Con�ict Resolution: If version con�icts arise, consider using tools like poetry or
pipenv , which provide more advanced dependency management and isolation. This is a

tip for the future, when projects grow in complexity.

https://pypi.org/project/numpy/

Understanding these concepts allows developers to manage their Python environments
e�ciently, ensuring that each project runs smoothly with the correct dependencies. This
approach not only enhances productivity but also improves maintainability across di�erent
projects.

Exercise #2

Chapter 3: Understanding Dependencies in Python

Dependencies in programming are essential components that enable functionality beyond the
core language features. In Python, external libraries provide additional functionalities needed
for complex applications.

This overview explains the concepts of dependencies, tools like pip, and requirements.txt ,
o�ering a comprehensive understanding of managing these elements e�ectively.

1. What Are Dependencies? Dependencies are external libraries or packages that your
Python application relies on to function. Packages like numpy for numerical computations,
pandas for data manipulation, and matplotlib for plotting are common dependencies.

2. Why Are Dependencies Important? Dependencies enrich functionality by extending
Python's built-in capabilities with specialized functionalities. They also allow reusability and
maintainability of code by separating core logic from external features, making it a modular
approach.

3. How To Manage Dependencies? requirements.txt is a text �le that lists all packages
required for a project. This �le has a full list of each package that the environment needs to

Ensure pip is installed.
Run python3 -m pip --version to verify.
Use python3 -m ensurepip --upgrade to install the latest version of pip (if
necessary).

Create a virtual environment in a new project folder
Change into the directory: cd project
Create the virtual environment: python3 -m venv myenv
Activate the virtual environment: source myenv/bin/activate

Fetch a package from PyPI via the website or use pip search <package-name> .
Install the package locally in the virtual environment: pip install <package-
name> within the activated environment.

Print out the installed packages: pip list or python3 -m pip list .

https://pypi.org/

have installed, along with its speci�c, minimum, or maximum version, with the following
syntax: numpy==1.21.2 . This allows for us to maintain consistency across environments.

Once this �le is created, the listed packages can be installed using the command pip
install -r requirements.txt , which downloads and installs all the speci�ed packages in

one step. You can then use pip install --upgrade <package> or pip freeze | grep
<package> to update or �x the version of speci�c packages within your environment.

If multiple packages depend on di�erent versions of a common package, pip resolves
con�icts based on priority and context.

Dependencies are crucial for building powerful Python applications, providing essential
functionalities that enhance the language's capabilities. Using pip and requirements.txt ,
developers can e�ectively install and manage these dependencies, ensuring projects remain
modular, maintainable, and scalable across di�erent environments.

Exercise #3

Chapter 4: Setting Up an AI Framework

Now that the fundamentals of Python environments are covered, let's begin by determining
whether you already have a speci�c AI framework in mind that you wish to utilize or if you
are open to exploring new ones.

The following steps are also the required steps for the 4th exercise:

Go back to the project on your computer.
Take note of all the packages you have installed manually. (tip: list installed packages)
Uninstall all packages.
Re-install them via pip using requirements.txt instead.
Print out the installed packages again.

Examine the requirements.txt �le from the GitHub respository of stable-diffusion-
webui

Note down particularities you can spot.

Ensure that whatever framework you choose is compatible with and can operate
e�ectively within a Python environment.

1

If you do not have any framework that you are interested in already, consider one of the
following recommendations, in order of complexity (in terms of setting up, clarity in
documentation, and maintenance):

2

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui

Chapter 5: Advanced (Bonus) Topics

There are alternatives to pip and python-venv which we have covered in this workshop
that are either considered faster (better performing) implementations, or solutions that bring
ease of use.

uv is a pip alternative, written in Rust, that is gaining a lot of popularity. Some newer
frameworks even opt to use it as their recommended tool for python package management
(such as InvokeAI).

conda is another package management tool designed to manage packages and their
dependencies, alongside other extended functionality, that is part of the larger anaconda
project.

With the conda package and environment manager, you have the capability to manage
multiple Python versions without having to install them globally on your system, just like you
can with any other Python module.

You can consider these alternatives as they o�er additional quality of life improvements when
it comes to Python environment management, and in some cases they might also be the best

ComfyUI: Ideal for those seeking a �owchart and graph-based user interface for AI
tasks.

Stable Diffusion WebUI: A powerful tool for generating synthetic images using Stable
Di�usion technology.

TTS Generation WebUI: Suitable for text-to-speech applications, o�ering a user-
friendly web interface.

Obtain detailed instructions on manually installing the selected framework. This ensures
that you can set it up independently, especially if it is not provided through standard
package managers.

3

Investigate and document all dependencies required for the chosen framework. This
includes additional libraries, APIs, or tools necessary to function optimally.

4

Identify the speci�c version of Python that the framework recommends or requires. If it
is di�erent than your currently installed version, �nd and install it on your OS.

5

If all goes well, once installed, launch the framework within your Python environment.
Begin experimenting with its features or integrating it into your existing projects.

6

Many Python-based frameworks thrive on the modularity of Python and how extensive
the ecosystem is. Consider enhancing the framework's capabilities by adding supported
"3rd party" extensions, or scripts. This allows you to tailor the AI framework to speci�c
needs, whether for image generation, speech synthesis, or other tasks. Any project that
natively supports this will have a dedicated section with instructional write-ups in its
documentation.

7

https://github.com/astral-sh/uv
https://github.com/invoke-ai/InvokeAI
https://anaconda.org/anaconda/conda
https://www.anaconda.com/docs/getting-started/getting-started
https://github.com/comfyanonymous/ComfyUI
https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/rsxdalv/tts-generation-webui

option for speci�c frameworks as the recommended way of installation.

Conclusion

By the end of this workshop, participants have had the chance to build a solid understanding
of Python environment setups and maintenance to handle complex dependency trees, manage
multiple environments, debug common errors, and maintain their work�ow in the face of
frequent updates.

This guide should be taken as reference to be adapted to participants' speci�c needs, such as
focusing on a particular library or including hands-on exercises with real-world projects. All
commands and examples listed here are purely for demonstration, and might require
revisions to be applicable to speci�c project/framework needs.

Vienna, 2025.

